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An algorithm is presented for removing tightly folded hairpins in an evolving collection of 
vortex filaments. It is argued that this removal provides a model of the effect of the small 
scales of turbulence. It results in a dynamic smoothing of vortex interactions and in a great 
reduction in the amount of labor required to sum them. The self-consistency of the model is 
exhibited numerically. 0 1990 Academic Press, Inc. 

INTRODUCTION 

Recent work [l&18] has shown that turbulence in an incompressible flow can 
be approximated by a “polymeric” model, which consists of an ensemble of 
stretched, folded, and pinched vortex tubes. This ensemble resembles in several 
technical aspects an ensemble of polymers in a solution, at a temperature propor- 
tional to the fluid viscosity. It was shown in the earlier calculations and analyses 
that if the approximating tubes have a cross section of constant circular shape, 
these tubes must fold if energy is preserved in the vortex stretching process. It has 
been suggested in the earlier work that the effect of small scales on large scales can 
be represented by the systematic cancellation and removal of tightly folded “hair- 
pins.” As explained below, the tubes are approximating elements and there is no 
claim that in general all real, physical vortex structures are tubular in shape. A 
physical vortex is approximated by a cloud of tubular vortices. 

The implementation of vortex hairpin removal leads to a rather difficult problem 
of pattern recognition. The purpose of this paper is to describe a plausible 
implementation of vortex hairpin removal within the context of a three-dimensional 
vortex method. The problems that are being addressed are how to recognize a hair- 
pin in a flow represented by a cloud of vortex segments and how to remove it 
without unduly perturbing the rest of the segments. The solution of these problems 
will be as simple as we can make it. The resulting algorithm will be applied to the 
analysis of the motion of a turbulent vortex ring. The numerical results support the 
belief that the underlying model and its rather crude implementation provide a 
useful and self-consistent shortcut for the numerical description of turbulence. In 
particular, three-dimensional vortex methods at high Reynolds number suffer from 
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a catastrophic increase in the number of vortex elements needed to resolve the 
increasing complexity of the flow, and the present algorithm greatly reduces the 
problem. It is hoped that similar constructions can be carried out in other contexts; 
nearby counterrotating structures must appear in any flow where vortex stretching 
occurs [ 14, 171, and their cancellation and reconnection should provide a powerful 
tool for simplifying calculations. 

It is worth noting that the vortex algorithm we end up with does not include a 
vortex core of fixed radius around each vortex segment. Instead, there is smoothing 
around vortex cores that allows for energy loss and vortex merger. The resulting 
“blobs” resemble the “blobs” of polymer theory [24, 251 more than the standard 
blobs of vortex methods. The random walk feature of vortex methods plays a role 
in the justification of the present model, but not in its implementation, which is 
entirely deterministic. 

We begin by reviewing a vortex method for three-dimensional flow and sum- 
marizing the arguments for hairpin removal. The implementation of hairpin 
removal is then described, and numerical results for the ring problem are presented 
and discussed. Further work is outlined in the conclusion. 

VORTEX METHODS 

Our starting point is the random vortex method, in the general form presented 
in [ 13, 231. More accurate methods that use higher order cores [S, 61 and 
filaments [2, 301 are available, but will be seen not to be appropriate for use 
together with the hairpin removal algorithm as we present it. 

The Navier-Stokes equations in three space dimensions can be written as 

a,~+(U’V)~-(g.V)U=R-lA~ (la) 

5 = curl u, div u = 0, (lb), (1~) 

where u is the velocity, 5 is’the vorticity, V is the differentiation vector, A = V . V, 
t is the time, and R is the Reynolds number. 

The support of the vorticity 5 is approximated by a union of N “segments” Ai, 
i=l , *.., N. Each segment is a circular cylinder of length si and radius Cl. It is 
characterized by seven numbers: the coordinates rf of its base, the coordinates r: of 
its top (si= lr[-rf I), and ci (Fig. 1). Each segment is assumed to be parallel to the 
vorticity 4 that it carries and is assigned a circulation ~~ equal to the flux of 5 across 
its cross section. Note that the transformation rf c-) rf, ICY + - ~~ leaves the velocity 
field produced by the vorticity in Ai unchanged. The radius 0 is the “cutoff” length. 
It is assumed that in an appropriate weak sense USE ki, &= {(A,). One can 
imagine the vorticity to be uniformly distributed on Ai. 

The velocity field due to 5 is 
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FIG. 1. A vortex segment. 

where q=rf--rF, ai=r-ry, rm= i(rf+rF)=center of Ai, a= [ail, and d(a)=a: 
when ai > cri, #(a) = dfai when ai c bi. The rule +4(a) = a: corresponds to the usual 
Biot-Savart interaction and the modification for ai < ~~ is the smoothing needed for 
convergence [2, 133, see also below. 

The solution of the Navier-Stokes equations can be approximated by the flow 
described by the stochastic differential equations 

dr = u(r) dt + (2/R)1/2 dw(t), 

dS(r)= CWW & 

(24 

(2b) 

where the quantity in square brackets is evaluated at r and w(t) is three-dimen- 
sional Brownian motion (see, e.g., [ll, 18, 22, 34361). We solve Eq. (2) at the top 
ri and the bottom r: of each segment. Vortex stretching is accounted for by the 
changes in ri -I$’ and no further account has to be taken of Eq. (2b). When 
si = Irf - rf’/ exceeds a predetermined maximum length h, accuracy may be lost and 
the segment is broken into two halves of equal lengths and cross sections. The new 
coordinates are obtained by linear interpolation. The stochastic differential equa- 
tion is solved by a fractional step method, in which the non-random part dx = u dt 
is solved by a fourth-order Runge-Kutta method with time step control 

At. V<t, 

where At is the time step, V=max,max,,, ju(r:‘)l, and r is a predetermined 
tolerance. One can readily see that in the absence of random walk and round-off 
error, this algorithm will preserve the connectivity of a closed vortex tube made up 
of segments attached end-to-end. Numerical experiment suggests the need for the 
inequality r <A, and we found the choice r =h to be satisfactory. We shall never 
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actually apply the random part of Eq. (2a) in this paper; it is written out for 
reasons that will appear in the next section. 

In this paper, we shall be working in a three-dimensional periodic box of period 
1, for the sake of simplicity. Periodicity requires that each vortex segment interact 
with each other segment and with each one of an infinite array of images of each 
other vortex. The program is written so that only the largest one of the image inter- 
actions is taken into account. In the calculations below all the segments are far 
enough from the edges of the box so that the interactions are identical to the 
interactions in a non-periodic unbounded domain. This programming short-cut is 
mentioned only because the program we shall use is available to any interested 
reader. 

When the method has been used until now, the smoothing parameter r~ has been 
kept constant in each segment, and the same for all segments, see [ 11, 131. A 
smoothing parameter is needed for convergence [2, 5, 11, 191. The use of a con- 
stant (T produces an apparent paradox: it is well known ([45]; see also the analysis 
in [16, 181) that the stretching of a vortex tube requires work that is used to spin 
up the fluid around the reduced cross section. A fixed 0 seems to deny this effect. 
The paradox is only apparent; one should remember that the segments we are using 
are only computational elements, not physical objects in their own right. A physical 
vortex will be made up of a cloud of segments; as the cloud stretches its cross sec- 
tion decreases and the spin-up appears. Clearly, a correct handling of this spin-up 
requires a reasonable numerical resolution, and inasmuch as our goal will be to find 
a collective representation for coherent portions of a vortex cloud, we may wish to 
find a more effective, time dependent, core. The other shortcoming of the method 
we have just described is that in three-space dimensions, at high or infinite 
Reynolds number R, the L, norms of the vorticity increase (possibly to infinity in 
a finite time [14]), and the number of segments required to represent 5 also 
increases (possibly to infinity in a finite time, see below). We wish to use a theoreti- 
cal understanding of the stretching process to overcome the need for very large 
numbers of segments. 

One should perhaps restate here a fact that should go without saying: when one 
approximates a flow by a collection of cylindrical vortex segments, one makes no 
representation that physical vortices are cylindrical. In fact, vortex approximations 
have first been used to approximate vortex sheets [19, 20, 311. 

HAIRPINS AND THEIR REMOVAL 

We now propose to modify the vortex algorithm just described by (a) allowing 
the vortex cores to change as the vortex segments stretch, in such a way that 
volume is conserved and (b) removing vortex “hairpins” as they form. The result 
of these modifications will be to create a vortex smoothing through a dynamical 
core. 

Step (a) is straightforward: one can assign to each segment an initial cross 
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section (rO (in all the programs below, o0 is the same for all segments). It is a matter 
of easy bookkeeping to decrease cr as the vortices stretch; when a vortex segment 
is split into two halves because its length exceeds the maximum length h, each half 
inherits the cross section of its parent. Step (a) is a useful change in the program 
only when done in conjunction with step (b), the hairpin removal. 

Hairpin removal can be explained and justified on several grounds, presented in 
the order of increasing complexity. 

I. A hairpin is a tight U-shaped vortex structure (see Fig. 2). Such hairpins 
can be seen in numerical calculations (see below). The influence of the vorticity in 
that hairpin on velocity far away is small, but it reduces the time step needed for 
accuracy. One can then simply decide to remove it. Such a removal resembles other 
types of surgery done in vortex calculations, for example [21]. Vortex calculations 
tend to produce configurations with a lot of details that consume computer time 
and conceivably add little to the global picture, and one may wish to remove them. 
The danger, of course, is that their cumulative effect is not negligible. 

II. Simplified models [15, 161 and a theory of the inertial range [17, 181 
show that hairpins must form in a collection of vortices of circular cross section as 
they are stretched. The reason is that the energy associated with a straight piece of 
vortex increases as its radius is decreased, and thus if vortices are stretched while 
energy is conserved, vortex lines must fold to allow for cancellations between the 
velocity fields associated with them. The Lamb energy integral [32], 

shows that such cancellation can indeed occur, since when g(x) .5(x’) < 0 the inter- 
action detracts from the total energy. Hairpins thus form, and they form more 
rapidly if CJ is allowed to decrease (for then the energy associated with the vortices 
increases faster and has to be compensated by folding earlier). The theory and the 
numerical results in [ 14, 15, 181 show that the hairpins concentrate on an ever 
smaller set (in the limit of vanishing viscosity, a set of measure zero), and thus it 

FIG. 2. Hairpins. 
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is most likely that the cumulative effect of their removal is not large if this removal 
occurs when they are tight enough. 

Furthermore, one cannot rely on the numerical schemes to fold the segment 
accurately, since accuracy is lost on small enough scales for any finite r (the 
parameter that determines the time step). Since one knows that the folding must 
occur, one can compel neighboring segments to fold tightly as soon as they begin 
to fold. As is well known from numerical experiment (see, e.g., [9, 14]), if such 
folding is not enforced, one soon produces spurious chaotic motion on small 
scales and an unphysical energy increase. The removal of hairpins thus resembles 
dealiasing in spectral methods [26]. 

Note that since hairpins must form as a consequence of energy conservation, 
their removal corresponds to the imposition of energy conservation on small scales 
by smoothing. This construction is analogous to the way “blobs” impose self- 
avoidance at small distances in polymer theory [24, 251. 

Up to this point, the analysis is made for the segments as computational 
elements, and no claim is made about the effect of hairpin removal on the physical 
flow. Presumably this effect must be discovered in each case by actual computation. 

III. Abandon now the disclaimer of the preceding paragraph and consider 
whether hairpin removal cannot be considered as a subgrid model of turbulence. 
(The possibility that a smoothing of vortex lines could provide such a model was 
considered earlier in [4, 141.) On moderate scales, not so large that outside stirring 
interferes, not so small that the core distortion that results from the close proximity 
of counterrotating vortices can interfere, one can view a turbulent flow as an 
ensemble of vortex tubes, in thermal equilibrium with a potential background, at a 
temperature proportional to the viscosity [9, 10, 17, 181. The random walk term 
was left in equations (2) to display the analogy with the equations of motion of a 
polymer in a solvent at a temperature T- R ~ i. It is conjectured [17, 181 that such 
an ensemble has a Kolmogorov-like spectrum, that the tubes behave on moderate 
scales like self-avoiding walks, and have hairpins on smaller scales that act as 
energy sinks. Hairpin cancellation is aided by a complex hydrodynamical process 
that involves a departure from the tube-like structure [3, 291. Hairpin removal thus 
models the effect of the small scales on the large scales. 

This last rationale for the removal should be viewed with some caution. The tur- 
bulence model it is based on is not at present well analyzed. Furthermore, it is not 
obvious that a turbulence model necessarily leads to a good numerical procedure. 
For example, in two space dimensions, one can see that isolated vortex patches 
tend to become circular [lo, 121, and if one picks their cores so that the spectrum 
is O(kp3), as in [ll], one obtains a vortex method that contains a turbulence 
model. However, other, physically less well motivated, cores [2, 63 may well 
provide a better numerical approximation. Nevertheless, this link with turbulence 
theory will lead to interesting speculations. 

Vortex tube models of the dissipation range of turbulence had been proposed in 
[40, 441. A tube model related to ours can be found in [S]. 
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IMPLEMENTATION OF HAIRPIN REMOVAL 

Suppose we have a collection of N vortex segments /ii, i= 1, . . . . N, as in Fig. 1. 
The length of ni is si, its radius is ui (ci is varying in time), and its cross section 
is ci = ne?. We wish to identify and remove hairpins on vortex lines as well as 
incipient hairpins, i.e., structures that would have been hairpins if numerical error 
were absent. This is a difficult problem in pattern recognition, to which the con- 
struction below is a plausible but ad hoc solution. Its possible failings are not 
necessarily a reflection of the incorrectness of the underlying theory. 

rj’, 
Consider two segments ni, Aj, with bases centered at rf, r;, tops centered at rf, 
lengths si, sj, cross section ci = rcaf , cj = rca,!, and centers ryj = )(rj, j + ri j) (Fig. 3). 

The distance between the centers is rii= Iry -r]? I. We define d,, the distance 
between the two segments, to be d,= rijsin 8, where the angle 8 is the angle 
between the segments measured from the segment with the larger cross section, say 
JI; (this choice is dictated by what follows). We pick a maximum distance p and 
consider two segments as being possibly on the same hairpin only if d,g p. 
Furthermore, they can be on a hairpin only if a folding has started, which will be 
assumed to have occurred if the inner product of the vorticity in the two segments 
is negative, rcircjsi. sj < 0, where si = r: - rf, etc. The “circulations” rci, rcj must 
appear in this inner product because of the ambiguity in the representation of the 
vorticity noted above. 

Let qij be the distance between the centers of the segments projected on the direc- 
tion of the “fatter” segment /li, qii = rii cos 8. If $(si + sj) < qii the removal algorithm 
below will have no consequences, and if $(s~+s~)N qii the removal algorithm will 
produce very small segments. We require that possible elements of the same hairpin 
satisfy the condition qij< p(si+ sj), where the parameter /I satisfies /I <OS. The 
calculation is not sensitive to the value of /I, and we generally picked B = 0.4. This 
constraint says that A,, Aj are not far from each other when their distance is 
measured in their own direction. 

Assume that all segments that have undergone little stretching have a location 
and length that are well approximated by the vortex method; stretching is of course 

rb 
I c 

rm qij r : 

FIG. 3. Relative position of two segments that may be on the same hairpin. 
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equivalent to decrease in cross section. If little stretching has occurred there is 
presumably little folding. Assume that initially all the cross sections are equal, and 
their common value is cO. Candidates for hairpins to be removed are only those 
segments for which c/c0 d c(, i.e., those segments that have been stretched at least by 
a factor l/or. Given a segment Aj with c,/c, < OL, we consider those of its neighbors 
Ai whose distance d, is less than p, which satisfy the conditions jI(s; + sj) > qi, and 
rcircjsi .s, < 0. We then consider only the segments that are “fatter” than Aj and find 
among the segments that satisfy all these conditions the one ni that is closest to /ii 
in the sense that dii is smallest. Of course, there may be no segment that satisfies 
all these conditions and then no removal involving n,i. /ii and Aj are now assumed 
to be on the same hairpin and be candidates for partial cancellation when the hair- 
pin is removed. We assume further that the location of the thinner, more stretched 
segment is less accurately known than that of the fatter segment, and thus one is 
freer to rotate the thinner segment to achieve cancellation. We thus rotate /lj (by 
construction the thinner of /ii and /ii) through its center until it is parallel to ni 
(Fig. 3), with the new direction of Aj preserving the negative sign of the inner 
product of ni and Aj, We then bring /ii and /1, close to each by moving each 
towards the other along their common normal, each segment moving a distance 
inversely proportional to its “weight” s 1~1; i.e., /ii moves a distance 
d,s, Ircjl/(si lrcil +sj 1~~~1) and /lj moves a distance dtisi IK~//(s~ Jrci( +sj 11~~1). The 
result is two segments that partially overlap. The nonoverlapping pieces are made 
into new segments, and the overlapping pieces are made into one new segment, 
with the cross section equal to the sum of the overlapping cross sections, and cir- 
culation equal to the sum of the circulation of the overlappings pieces. If the 1~~1, 
i= 1 , . . . . N, N = number of segments, are all equal, the segment that results from the 
overlap will have zero circulation and is thus removable. We shall arrange the 
approximation at t = 0 so that all segments have equal circulation, and thus two 
segments will give birth to two segments through this process; some of the new 
segments may be very short. For the possible configurations of the cancelling 
segments, see Fig. 4. 

FIG. 4. Cancelling vorticity in hairpins. 



HAIRPIN REMOVALINVORTEXINTERACTIONS 9 

Note that only one of the segments is rotated. One can think of more elaborate 
rotation schemes in which both segments turn. We have not yet found a more 
elaborate scheme that seems to improve on the results below. 

The over-all process runs as follows: one starts with the segment Aj that has the 
smallest cj/c,. One looks for a neighbor to pair it with; if there is one, the pairing 
and removal are done. If there is no suitable neighbor, one goes on to the next 
segment with a larger or equal cj/cO. A piece of a segment may be paired more than 
once; i.e., it is possible for a segment to be paired to another one, and then for one 
of the surviving pieces to be paired once again. The process stops when one reaches 
a segment /ii with cj/c, > a. A running record of the last value of cj/c,, reduces the 
amount of searching needed. Any segment for which s 1x1 < s,,,~” is removed (so that 
in particular segments with K = 0 are removed). We picked smin = 0.001; this value 
is so conservative that it has no impact on the outcome of the calculation and could 
safely be raised. The removal is done once every time step. 

The remaining numerical parameters are: /?, CI, p. /? will be left at the fixed value 
/I = 0.4. Clearly, the larger p or a the more cancellation will occur, and when we are 
testing the effect of the removal we are able to vary either. We conjecture that the 
important parameter is a product of the form p%, where g > 0 depends on the vor- 
ticity dimension D [ 14, 151, but we fix p at the plausible value p = h (the maximum 
segment length) and present numerical results obtained with different values of a; 
a thus determines the onset of hairpin removal. 

THE MOTION OF VORTEX RINGS 

We apply the algorithm just described (a vortex method with hairpin removal) 
to the motion of a thin circular vortex ring with unit circulation. The ring is charac- 
terized by the radius A of its axis and the radius q of its cross section (Fig. 5). There 
are no solid boundaries in this problem, and thus the random walk part of Eq. (2) 

FIG. 5. A vortex ring. 
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can be omitted. The physical vortex ring is approximated initially by N filaments 
made up of segments attached end-to-end; the circulation is divided evenly among 
them. One of these filaments coincides with the axis of the cylinder, and (N - 1) are 
distributed around it on a circle of radius q. A detailed application of a vortex 
method to this problem, together with stability results and a parameter study, can 
be found in [30]; related problems have been considered in [4, 143. 

The velocity of the ring is given by [32] 

U = (log( 8A/q) - C)/4nA, 

where the constant C depends on the distribution of the vorticity in the ring and 
is thus dependent on the number of filaments. Furthermore, the q is imposed and of the non-constancy of the vorticity 

distribution in the numerical model. 
The stability of this type of vortex ring has been analyzed exhaustively, [39, 461. 

In Fig. 6 we present a calculation in which the ring is represented by these 
filaments, with a fixed segment radius 0 = 0.1, r, the parameter that determines the 
time step in the Runge-Kutta integration, equal to 0.05, and h = maximum segment 
length = r. More extensive calculations along these lines can be found in [30]. The 
only perturbations that exist in the flow are due to round-off errors; a relatively 
large value of D has been picked to delay the onset of instability. The calculation 
starts with N = 72 segments and proceeds until N = 600. The most unstable mode 
has 12 nodes, corresponding faithfully to the most unstable wave number. A careful 
comparison between numerical results and stability theory is also available in [30]. 
Note that hairpins form but there is little folding in the direction of the axis; the 
perturbation due to round-off is not sufficient to break the radial symmetry of the 
problem before N becomes relatively large. The introduction of a variable 0 and the 
removal of the hairpins have a minimal effect on this calculation. The conclusion 
is that a vortex method is able to display the initial instability but becomes expen- 
sive rapidly; hairpin removal does not affect this conclusion to a significant extent; 
some form of turbulence is necessary to exhibit its power. 

There is a substantial experimental literature on turbulent vortex rings [37, 381. 
The statistically steady vortex rings that have been observed consist of a rapidly 
rotating coherent narrow core that exchanges vorticity with a wider region with 
weak vorticity, into which outside fluid is entrained and is then expelled 
downstream. Such rings are created by expelling a fluid slug from an orifice, and 
their modelling is beyond the scope of the present paper. The dynamics of a ring 
depend on the initial conditions, and we know of no experiment that corresponds 
to initial conditions that consist of a coherent ring surrounded by potential flow. 
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The following experimental observations will be useful to the interpretation of the 
results below: (a) vortex rings slow down, (b) as mentioned above, stable vortex 
rings consist of a coherent core surrounded by a vertical cloud, (c) the quantity 
dA/dZ is of order lo-*, where A is the radius of the axis of the ring and X is the 
distance travelled by the ring, (d) solitary waves stabilize the ring, (e) the behavior 
of the ring is a sensitive function of initial conditions, of the ambient flow, and of 
a hard to quantify degree of organization of the ring. 

In order to obtain a ring that can be viewed as “turbulent” we perturb the initial 
data by giving one point on the center filament a perturbation of amplitude 10-2. 
This results in solitary waves moving on the ring 114, 333 and leads to a break in 
the symmetry of the ring that allows axial folding to occur. Presumably, this folding 
and the resulting formation of removable hairpins is a form of stabilization. The 
ring thickens, and this thickening may be viewed as a stage in the formation of a 
surrounding vertical cloud. The ring eventually collapses; this collapse follows an 
apparent singularity formation (see the next section for details). Such collapse is not 
seen in the experimental data quoted, which, of course, relate to different initial and 
boundary conditions, but it does appear in casual observations of smoke rings 
subject to disturbances from the ambient fluid. The numerical observations are 
described in detail in Ihe next section. Note that structures that persist yet entrain 
and expel fluid have been observed in other vortex calculations [41]. 

NUMERICAL RESULTS 

Our major numerical results are summarized in Fig. 7 and 9, which show that 
with vortex hairpin removal one obtains a self-consistent approximation that keeps 
the computational effort within acceptable bounds. 

The calculations are started with three vortex filaments, one of which is 
perturbed. 0 = 0.05 initially for all segments, N = number of segments = 72. The 
other numerical parameters are h= z =p =0.05; we have carefully checked that 
these choices provide an adequate resolution and that further refinement does not 
change the conclusions. The remaining parameter is a; l/a is the amount of 
stretching a segment has to undergo before it becomes a candidate for inclusion in 
a removable piece of hairpin. The calculation was stopped whenever the number of 
segments exceeded 800; if a < 0.025, this limit was exceeded before any hairpin 
removal had occurred; thus a = 0.025 and a = 0 are indistinguishable. 

In Fig. 7 we plot the number N of vortex segments as a function of time for 
a = 0.15, a = 0.05, and a < 0.025. Clearly the number of segments increases as a 
decreases. For a ~0.025 it quickly becomes intolerable. Since N is roughly propor- 
tional to the L, norm of the vorticity, this graph suggests that the solution of 
Euler’s equation for this ring problem blows up around t=0.18-0.19. Clearly, 
vortex hairpin removal reduces the amount of labor in the calculation. In Fig. 8 we 
plot the time step At as a function of t (as restricted by At. U< t) for a = 0.05 and 
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FIG. 7. Number of segments N as a function of t. 

a < 0.025. Clearly, At decreases as a decreases, thus further increasing the amount 
of labor required to find the evolution of the ring as a function of t. With a < 0.025 
the calculation cannot be continued with N< 800 for t > 0.155. The removal of 
hairpins thus accelerates the calculation by a huge factor. The remaining question 
is whether the numerical results are trustworthy. At present the answer to this ques- 
tion cannot be absolute. Some indications can be found from the study of the ring. 

In Fig. 9 we plot the velocity of the ring U as a function of t. U is calculated as 
follows: the axis of the ring is set initially in a plane parallel to the (y, z) plane, and 
the x coordinate x: of the center of the ring after n steps is calculated by the 
formula 

c X”Wi 
x:=+-$ 

where x’ is the x-coordinate of the center of the ith segment after n steps and the 
weight wi is wi= 1~~1 si. At the time t that corresponds to n steps, the velocity is 
calculated as U(t) = (x; - x;-‘)/At. 

After the first few steps the velocity U is highly oscillatory and oscillates more for 
smaller values of a. We ascribe this oscillation to the effect of the hairpins, which 
give large local curvatures and thus rotate rapidly. To obtain a readily intelligible 
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FIG. 8. Time step Af as a function of t. 

graph, after the first five steps we replace the local U(t) by the average of the last 
live values of U. Since dt is not fixed and not independent of a, this averaging has 
a slight distorting effect on the comparisons below. 

In Fig. 9 we plot the functions U(t) so obtained for several values of a. For 
a > 0.15 the graph begins to flatten substantially, and thus values with c1> 0.15 are 
too large. For LY < 0.05 the graphs coincide to the extent that they can be traced 
with N< 800. The slight discrepancy between a = 0.05 and a < 0.025 during the 
short time where the latter is both computable and different from the former can 
be ascribed to the effect of the time averaging. The difference between a = 0.15 and 
a =0.05 is instructive: there is a non-negligible added oscillation when a = 0.05 

between t=O.l and t =0.2. It is tempting to ascribe this difference to the presence 
of a large hairpin that is removed in one case and not the other. Already in [14] 
we saw a large fluctuation in various averaged quantities that coincided with the 
appearance of a large hairpin (but a cause to effect relationship has not been 
established). 

The most interesting feature of Fig. 9 is the “crisis” around t = 0.2, during which 
the velocity drops nearly to zero. The timing of this “crisis” depends on the initial 
perturbation. A qualitatively similar crisis appears in the graph of the kinetic energy 
as a function of time; this graph is not reproduced because its accuracy is very 

581/91/1-Z 
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FIG. 9. Ring velocity U as a function of t for the perturbed ring. 

suspect: as discussed in [14], it is very difficult to evaluate the kinetic energy 
accurately for a highly intermittent vertical flow. The onset of the “crisis” follows 
the estimated time of singularity formation, and it is tempting to believe that the 
two are related. A similar observation has been made recently in a difference 
calculation [7], and qualitatively similar observations have been made in the 
problem of sheet motion in the plane [31], where a singularity also appears. 

One can try to check the calculation by checking the constancy of certain 
invariants. The three components of the integral j 5 dx should be zero for a collec- 
tion of closed vortex lines, and a verification of this fact checks that the representa- 
tion of the lines by disconnected segments and the rotation in the merger process 
are not harmful. The dangers are greatest for the larger values of cc In the worst 
case we have presented, u = 0.15, the components of the normalized quantity 
5 5 dx/j 151 dx oscillate slightly around 0, the largest value in the interval of interest 
0 < t < 2 being 0.03. If one keeps on running for a longer time the oscillation can 
become larger (a value of 0.13 has been observed at t = 3.5 with a = 0.15), but these 
values are consistent with the growth of truncation error in a thermalized environ- 
ment. Other invariants of smooth inviscid flow, for example the impulse, cannot be 
expected to remain constant (and in fact could not be constant if the energy and 
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U decrease). This is no cause for alarm. Folded vortex regions shoot off and carry 
impulses away from the central flow region and their removal decreases the total 
impulse, in our implementation or any other. This removal should not affect the 
organized part of the flow. 

The radius A of the vortex ring changes in time; a numerical approximation to 
it is 

A2 = 1 ((yyy2 + (zy)qi wi c wi. 
I I 

with x7 = (~7, yT, zT) and wi = 1~~1 si as before. A increases in time, with computed 
value of dA/dZ, x = distance travelled, of order -0.01-0.02, comparable to the 
experimental values in the nearly steady vortex experiments. The experimental and 
the numerical conditions are quite dissimilar, so it is unclear what significance 
should be attached to this observation. 

In Fig. 10 we display a visualization of the flow at various times. Hairpins appear 
and the flow eventually becomes disorganized. The only surprise in these pictures 
is that casual observation leads to misleading conclusions about the flow. At time 
t = 0.16 the flow appears quite disorganized, yet U, the velocity of the ring, is still 
at its “organized” value before the crisis. Better visualization techniques remain to 
be discovered (see the discussion in [42]). 

The program as we have written it is logic-intensive, since the search for possible 
hairpins has not been optimized. Bin-partition schemes, such as the ones used in 
conjunction with fast vortex summations [l, 271, would improve the program’s 
efficiency. A typical run with tl =O.l takes about 3 h on a Sun 2 work station or 
15 min on a Cray 1; most of the time is spent in locating hairpins. 

CONCLUSIONS AND SPECULATIONS 

The main conclusion from the calculation is that vortex hairpin removal is a 
reasonable way of simplifying vortex calculations. The next steps should be to apply 
it to more complicated problems and to marry it with fast summation algorithms, 
both in order to speed the vortex summation part and to simplify the search for 
hairpins. 

There is no reason why vortex hairpins cannot be recognized and detected in a 
calculation based on finite differences or on a spectral representation. The problem 
of identifying hairpins is probably harder in these other contexts but not necessarily 
insurmountable. 

If one interprets the removal of hairpins as the mechanism of energy loss in a 
turbulent medium, then the calculations above lead to interesting speculations. 
Hairpin removal creates regions of high vorticity that are not connected (i.e., vortex 
tubes that are alternately very thin and quite fat), as can be seen in Fig. 9. The 
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pictures obtained by spectral methods (see, e.g., [43, 471) are quite similar, and 
suggest that an unrecognized process of hairpin cancellation occurs there too. 

In the spectral calculation in [47] it was observed that much of the energy 
dissipation occurs elsewhere than where the absolute value of the vorticity is large. 
Assuming that this observation is not due to numerical dissipation, one can conjec- 
ture that hairpin cancellations are still going on in regions where the vorticity 
amplitude has already decayed and, in fact, that this is how the disconnected high 
151 regions are formed. (The surprising conclusions of [47] were pointed out to me 
by R. Kraichnan.) 

More generally, the calculations above provide supporting evidence for the belief 
that hairpins play a major role in the mechanics of turbulence (as was suggested in 
[15, 16, 301, and as is already quite firmly known to be the case near walls [28]) 
and also provide supporting evidence for the usefulness of polymeric models. 

Note. The program used above is available from the author. 
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